Simplicial Complexes of Whisker Type
نویسندگان
چکیده
Let I ⊂ K[x1, . . . , xn] be a zero-dimensional monomial ideal, and ∆(I) be the simplicial complex whose Stanley–Reisner ideal is the polarization of I. It follows from a result of Soleyman Jahan that ∆(I) is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that ∆(I) is even vertex decomposable. The ideal L(I), which is defined to be the Stanley–Reisner ideal of the Alexander dual of ∆(I), has a linear resolution which is cellular and supported on a regular CW-complex. All powers of L(I) have a linear resolution. We compute depth L(I)k and show that depth L(I)k = n for all k > n.
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملBalanced Vertex Decomposable Simplicial Complexes and their h-vectors
Given any finite simplicial complex ∆, we show how to construct from a colouring χ of ∆ a new simplicial complex ∆χ that is balanced and vertex decomposable. In addition, the h-vector of ∆χ is precisely the f -vector of ∆. Our construction generalizes the “whiskering” construction of Villarreal, and Cook and Nagel. We also reverse this construction to prove a special case of a conjecture of Coo...
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015